Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros

Base de datos
Tipo del documento
Intervalo de año
1.
Viruses ; 14(9)2022 09 08.
Artículo en Inglés | MEDLINE | ID: covidwho-2055391

RESUMEN

Mastomys natalensis is the natural host of various arenaviruses, including the human-pathogenic Lassa virus. Homologous arenaviruses, defined here as those having M. natalensis as a natural host, can establish long-lasting infection in M. natalensis, while these animals rapidly clear arenaviruses having another rodent species as a natural host (heterologous viruses). Little is known about the mechanisms behind the underlying arenavirus-host barriers. The innate immune system, particularly the type I interferon (IFN) response, might play a role. In this study, we developed and validated RT-PCR assays to analyse the expression of M. natalensis interferon-stimulated genes (ISGs). We then used these assays to study if homologous and heterologous viruses induce different IFN responses in M. natalensis cells. Infection experiments were performed with the homologous Lassa and Morogoro viruses and the related but heterologous Mobala virus. Compared to the direct induction with IFN or Poly(I:C), arenaviruses generally induced a weak IFN response. However, the ISG-expression profiles of homologous and heterologous viruses were similar. Our data indicate that, at least in M. natalensis cells, the IFN system is not a major factor in the virus-host barrier for arenaviruses. Our system provides a valuable tool for future in vivo investigation of arenavirus host restrictions at the level of the innate immune response.


Asunto(s)
Infecciones por Arenaviridae , Arenavirus , Interferón Tipo I , Animales , Arenavirus/fisiología , Humanos , Inmunidad Innata , Murinae , Tanzanía
2.
Viruses ; 13(6)2021 05 24.
Artículo en Inglés | MEDLINE | ID: covidwho-1282631

RESUMEN

Several of the human-pathogenic arenaviruses cause hemorrhagic fever and have to be handled under biosafety level 4 conditions, including Lassa virus. Rapid and safe inactivation of specimens containing these viruses is fundamental to enable downstream processing for diagnostics or research under lower biosafety conditions. We established a protocol to test the efficacy of inactivation methods using the low-pathogenic Morogoro arenavirus as surrogate for the related highly pathogenic viruses. As the validation of chemical inactivation methods in cell culture systems is difficult due to cell toxicity of commonly used chemicals, we employed filter devices to remove the chemical and concentrate the virus after inactivation and before inoculation into cell culture. Viral replication in the cells was monitored over 4 weeks by using indirect immunofluorescence and immunofocus assay. The performance of the protocol was verified using published inactivation methods including chemicals and heat. Ten additional methods to inactivate virus in infected cells or cell culture supernatant were validated and shown to reduce virus titers to undetectable levels. In summary, we provide a robust protocol for the validation of chemical and physical inactivation of arenaviruses in cell culture, which can be readily adapted to different inactivation methods and specimen matrices.


Asunto(s)
Arenavirus/fisiología , Desinfección/métodos , Inactivación de Virus , Animales , Técnicas de Cultivo de Célula , Línea Celular , Células Cultivadas , Chlorocebus aethiops , Desinfección/normas , Humanos , Reproducibilidad de los Resultados , Manejo de Especímenes/métodos , Células Vero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA